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We study wave propagation in a one-dimensional disordered array of scattering 
potentials. We consider three different ensembles of scatterer configurations: an 
N-ensemble with a fixed number  N of scatterers, an L-ensemble with a varying 
number  of scatterers distributed over a fixed length L, and an NL-ensemble 
where both N and L are fixed. The latter ensemble allows a detailed study of the 
mean resistance and its variance for a fixed length L as the number  of scatterers 
N increases. We find that the Landauer  result, which predicts an exponential 
increase of the mean resistance with N, is valid only in the low-density regime. 
At high density the mean resistance grows exponentially with x / ~  and the con- 
cept of optical potential applies. In the crossover regime we find an interesting 
resonance. 
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1. I N T R O D U C T I O N  

We consider wave propagation in a one-dimensional disordered array of 
scatterers. It has been argued by Landauer Il) that the resistance of such an 
array is given by the ratio of the reflected to the transmitted intensity of an 
incident plane wave. Buttiker et  al. (2~ have recently discussed the physical 
assumptions underlying this expression for the resistance. As is well known, 
the resistance of a one-dimensional array is not proportional to the length 
of the sample. Rather, Landauer (1} has shown that on average the 
resistance grows exponentially with the number of scatterers. It was later 
realized that the average resistance is not a very meaningful quantity, since 
the width of the distribution of resistance grows even more rapidly. 

J Institut ffir Theoretische Physik A, R W T H  Aachen, 5100 Aachen, West Germany. 
2 Department  of Physics, University of Michigan, Ann Arbor, Michigan 48109. 

695 

00224715/86/1100-0695505.00/0 ~; 1986 Plenum Publishing Corporation 



696 Felderhof and Ford 

Anderson et al. (31 argued that the logarithm of the resistance would have a 
better behaved probability distribution and they proposed a scaling theory. 

In this article we study the average resistance and its variance as a 
function of the density of scatterers and show that these quantities behave 
qualitatively differently in the low- and high-density regime. Explicit 
calculations are carried out for a model with identical 6-function scatterers 
distributed with Poisson statistics, the so-called P6-model. We consider 
ensembles of scatterer configurations where either the number N of scat- 
terers, the length L of the array, or both N and L are fixed. We call these 
ensembles the N-ensemble, the L-ensemble, and the NL-ensemble, respec- 
tively. In the NL-ensemble we find that for N ~ k L ,  where k is the 
wavenumber, the mean resistance grows exponentially with N as predicted 
by Landauer, whereas for N~> kL the mean grows exponentially with , , ~  
at fixed L. The latter behavior can be understood on the basis of the con- 
cept of optical potential. We also show that for N ~ kL the variance grows 
faster than the mean squared, whereas for N>> kL the variance grows at 
most at the same rate. This suggests that the probability distribution of the 
resistance has qualitatively different behavior in the two regimes. It seems 
possible that in the high-density regime the relative variance actually 
decreases with N at fixed L, indicating a sharpening distribution on the 
scale of the mean. 

As shown by Erd6s and Herndon, (41 the resistance may be expressed 
as an element of a three-dimensional transfer matrix. Similarly, its square 
may be expressed as an element of a five-dimensional transfer matrix. In an 
earlier article (5/(referred to as I), one of us gave a streamlined derivation of 
these expressions. For  the P&model in the L-ensemble Frisch and Lloyd/6/ 
have developed an entirely different theory. We show how their analysis is 
related to the transfer matrix method. 

2. TRANSFER M A T R I C E S  

We consider the time-independent Schr6dinger equation describing 
wave propagation through a one-dimensional disordered array of identical 
nonoverlapping scatterers, 

h2 d2q~ + ~ V(x-xj)q)=Eqo (2.1) 
2 m  d x  2 j = l  

With appropriate transcription the theory applies to classical problems, 
such as acoustic or electromagnetic wave propagation. We assume that the 
scattering centers are ordered xl < x 2 <  ' <xN with x I located at the 
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origin. The transmission of a wave incident from the left through the array 
is described by the transfer relation 

where T is the transmission coefficient and R is the reflection coefficient. 
The transfer matrix W(N) is given by the product 

W(N) = G*(XN) MG(XN--XN_I)M"" MG(x2)M (2.3) 

where M describes the effect of a scatterer and the matrix G ( x ~ + l - x j )  
describes the free propagation between scatterers. The transfer matrix M 
may be written in the form 

- ifl) (2.4) 
M =  ifl ~* 

with complex e and real/3, which depend on the energy E and are related 
by 

]~12-fl 2= 1 (2.5) 

The propagation matrix has the form 

for wavenumber k = (2mE/h2) 1/2. 
The resistance p of the array is defined by p =  IRt2/IT[ 2. We have 

shown previously (5) that the wave propagation may be mapped onto the 
motion of a two-dimensional harmonic oscillator which is perturbed 
parametrically by hits occurring at instants xl,..., XN. In this mapping the 
resistance is related to the energy of the oscillator after the last hit by 

p = �89176 -- �89 (2.7) 

The energy E(X) is given by a matrix element of a three-dimensional trans- 
fer matrix 

g(X) = [K3G3(~N)-.. G3(~.2) K3122 (2.8) 

where K 3 and G 3(4) are three-dimensional matrices and [..-]0. denotes the 

822/45/3-4-22 
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/j element of the matrix in square brackets. The collision matrix K3 is given 
by 

( ~2 --i~xfl --3 2 ) 
K3= 2&fl Iccl2+fl 2 -2io:*fl (2.9) 

\ --3 2 i~*fl o~ .2 / 

and the propagation matrix G 3 by 

G3(~)  = 0 1 

0 0 e -  2~kr 
(2.10) 

We shall be interested in evaluating the average resistance and its variance 
for a probability distribution of scatterer configurations. For the 
calculation of the variance it is useful to write the square of the energy 
g2(X) as a matrix element of a five-dimensional transfer matrix. For a fixed 
configuration of scatterers we have (5) 

g2(x) = }[GG~(r G,(~2) G]33 + 1 (2.11) 

The five-dimensional collision matrix K5 is given by 

Ks= 

~4 _2ia3fl _~2fl2 2iotfls f14 
2i0~3fl ~2(1~12 + f12 ) -- i~fl(lal2 + fl 2) -fiz(3 [c(12 § fl 2) 2iot*fl 3 

[ __6~2fl2 6i~fl([al2§ 1~14§ 1~12 fi2 § f14 __6ior247 __6a,2f12 ] 
~ -2i~fl 3 -fl2(3 Ic~12+fl 2) i~*fl(l~12 +fl 2) ~*Z(l~12+3f12 ) -2i~'3fl] 
\ f14 _2i~*fl3 _a,2f12 2ia*3fl ~,4 / 

(2.12) 

and the propagation matrix Gs(~) by 

I e4ik~ 1 e 2ik~ 0 
G5(r  = 1 (2 .13)  

0 e 2ikr 
e - 4ik~ i 

The expression (2.11) has the advantage over the square of the expression 
(2.8) that its average is more easily evaluated. 
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3. P R O B A B I L I T Y  D I S T R I B U T I O N S  

In choosing the probability distribution of scattering configurations we 
demand ease of calculation as well as relevance to physically realizable 
situations. Thus we assume that the probability distribution may be 
described as a random walk in which the probability that scatterer j + 1 is 
located between xj+ ( and xj+ ( +  d~, on condition that scatterer j is 
located at xj, equals f(~)d~, where f ( ( )  is a normalized distribution. The 
probability for a particular configuration of N scatterers is then given by a 
Markov chain with probability 

N 

PN(X,, "'', XN)=•(Xl) H f(xj--Xj--1) (3.1) 
j--2 

Averages over this distribution will be denoted by ( ' - - )N.  Probability dis- 
tributions of the type (3.1) occur in particular in the pressure ensemble of 
fluids with nearest neighbor pair interactions. ~7/ 

We shall also wish to average over a subensemble of N scatterers with 
fixed total length L. The corresponding probability distribution is given by 

N 

PN.L(X~'"',XN)=6(Xl)C~(XN - L )  [I f(Xj--Xj ~)/FN(L) (3.2) 
j = 2  

with the length distribution 

j = 2  N 

The Laplace transform of the length distribution is 

;o o JFN(S) ~--" e-SLFN(L) dL = I- f  ( s ) ]  N - - I  ( 3 . 4 )  

where f(s)  is the Laplace transform of the neighbor distribution f(~). In the 
pressure ensemble, real, positive values of s are identified with p/O, where p 
is the pressure and 0 is Boltzmann's constant times absolute temperature. 
Averages over the probability distribution (3.2) will be denoted by 
( " ) N , r .  Evaluation of such averages will involve an inverse Laplace 
transform of a quantity ( " ' )N,s  calculated at fixed N and s. We shall refer 
to the probability distribution (3.1) as the N-ensemble and to the dis- 
tribution (3.2) as the NL-ensemble. 

In the case of fluids in thermal equilibrium the length distribution (3.3) 
is related to the canonical configurational partition function QN(L) by 

FN(L ) = e-PI4OQN(L )/~ N(p) (3.5) 
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where 45N(p) is the normalization factor. We also wish to consider the 
grand canonical ensemble with a fluctuating number of particles on a fixed 
length L. The corresponding probability distribution is 

PL(x l  ..... xjv) = z N 2QN(L) PN, L(Xl,..., Xlv)/Z(Z, L)  (3.6) 

where z is the activity and ~(z, L) is the grand canonical partition function 

,..~(Z, t ) =  ~ z N - 2 Q N ( L  ) (3.7) 
N=2 

We have taken account of the fact that particles 1 and N are fixed at the 
ends. We shall refer to the probability distribution (3.6) as the L-ensemble 
and denote averages by ( " ' ) L .  We may relate the activity z to the 
pressure p occurring in the N-ensemble by defining the chemical potential 
as # = 0 log z and using the thermodynamic relation L / ( N ) L  = ((?l~/(?p)o. 

In our explicit calculation we shall consider the simplest possible 
probability distribution. This corresponds to shot noise, or equivalently to 
a Poisson process. In the language of fluids one deals with ideal gas 
statistics, completely characterized by the average number density n. The 
nearest neighbor distribution is given by 

f ( ~ ) = n e  -"~ (3.8) 

This has the Laplace transform 

f ( s ) =  " 
n + s  

(3.9) 

and from (3.4) one easily finds that the length distribution is given by 

FN(L)  = ne ,L (nL) u z (3.10) 
( N - 2 ) !  

For the ideal gas the canonical and grand canonical partition functions are 

L N 2 
Q N ( L ) =  (N-- 2)-----~ ' Z(z,  L ) = e  zL (3.11) 

The equation of state p = n 0  yields z = n ,  so that the L-ensemble (3.6) 
becomes 

PL(Xl . . . . .  XN) = n - I F N ( L  ) PN,L(Xl ..... XN) (3.12) 
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Integrating over positions and using (3.10), we see that the probability 
PL(N)  of finding N -  2 particles on the line between 0 and L is given by the 
Poisson distribution 

P r ( N )  = n -~FN(L)  = - -  
(nL)N -2 nL 

e (3.13) 
(N--Z)!  

The above equations completely specify the probability distributions for 
the three ensembles in the case of shot noise. 

4. M E A N  R E S I S T A N C E  

Using the probability distributions defined in the preceding section, we 
can now evaluate the mean resistance for the various ensembles. It follows 
from (2.7) that alternatively we may consider the mean energy of a 
parametrically perturbed oscillator. From (2.8) we find by averaging over 
the probability distribution (3.1) for the mean energy 

( ~ ) N  ~- [K3( (G3)  K3) N 112 2 (4.1) 

where ( G 3 )  is the average of the propagation matrix G3(~) in (2.10) over 
the neighbor distribution f(~).  The asymptotic behavior of ( g ) x  for large 
N is dominated by the largest positive real root of the characteristic 
equation I A I -  ( G 3 )  K3t = 0, which reads explicitly 

A 3 - -  A ( f * )  A 2 + A ( f ~  ~) If212 A - I f2t 2 = 0 (4.2) 

with the abbreviations 

f2 = e-2i '~f(~)d~,  A ( z ) = l ~ t 2 + f l 2 + 2 R e ( ~ 2 z )  (4.3) 

In the case of Poisson statistics we find from (3.9) 

H 
f2 n + 2ik (4.4) 

For  6-function scatterers with potential V ( x - x i ) =  V o 6 ( X -  xj) 

= 1 - ifl, fl = mVo/h2k (4.5) 

In this case the cubic equation (4.2) may be written 

(v 2 + 4) A 3 - -  (3v 2 + 8fly + 8fl 2 + 4) A 2 + (3v  2 + 8flv)A - v 2 = 0 (4.6) 
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where we have introduced the dimensionless variable v = n/k. We denote 
the roots of this equation as A~(v, ~) for i=  1, 2, 3. There is always one real 
root larger than unity, which we shall denote as Al(V, fi). The asymptotic 
behavior of the mean resistance ( p ) u  for large N is given by 

( P ) N ~ exp(N In A 1 ) (4.7) 

The average resistance for the probability distribution (3.2) at fixed N 
and L is found via the Laplace transform 

<g)N,~ = [K3(<Q3(s)) K3) x 112 2 (4.8) 

where the matrix <G3(s)) is defined by 

with certain amplitudes 
IZI- (~3(s) )  K31 =0. In 
reads explicitly 

( G 3 ( s ) )  = f ;  e-SCf(~) G3(~)d~ (4.9) 

The average resistance at fixed N and L follows from (2.7) with the mean 
energy 

_ _1 I s  L (g)U,C 2niFN(L) e ~ ) N , s d s  (4.10) 

where the integration path goes from - ioo to + ioo in the complex s-plane 
to the right of all singularities of the integrand. The expression (4.8) is of 
the form 

3 
(~)x,s = ~ C~(s) exp[Uln 2~(s)] 

i=1 

C~(s) and roots ~(s) of the 
the case 

(4.11) 

cubic equation 
of 6-function scatterers this equation 

}~3 _~_ ~2,~2 _[_ ~1 ~ + C0 = 0 (4.12) 

with coefficients 

 0=-LLf 2 

et = (1 + 2 /~2 )Lf  2+ (1 - ~ 2 ) f o ( L + f _ 2 ) + z i ~ f o ( ~ - f _ 2 )  (4.13) 

e2 = - ( 1  + 2/~ 2) fo - (1 -/~2)(f2 + f 2) - 2 i ~ ( L  - ~ 2 )  

with the definition 

~= fo e-Se-Ok~f({) d{ = f ( s +  gk) (4.14) 
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In the case of Poisson statistics 

n _ /7 /Tt  

f ;=n+s+ijk n' n'+ijk (4.15) 

where n ' =  n + s. Hence it follows that in that case the roots of (4.12) are 
related to those of (4.6) by the simple transformation 

/7 
2i(n, k, fl, s)=--~y Ai(y, fl), i =  1, 2, 3 (4.16) 

where y =  n'/k. This relation will allow us to calculate (P)N.L for large N 
and L in a relatively simple manner. 

5. RELATION TO FR ISCH-LLOYD EQUATION 

We shall denote the model with Poisson statistics and f-function scat- 
terers as the P6-model. This model has been studied in great detail by 
Frisch and Lloyd, ~6) who evaluated the density of states. Their method was 
based on a mapping of the eigenstates onto the motion of a one-dimen- 
sional oscillator suffering random hits. They derived a kinetic equation for 
the probability distribution in the phase space of the oscillator. The method 
is easily extended to the study of scattering solutions with nonvanishing 
current density. As shown in I, in that case a mapping onto the motion of a 
two-dimensional oscillator is more appropriate. Assuming that the first hit 
occurs at x l = 0, we choose two real, standard solutions of the Schr6dinger 
equation with the properties 

ql(x)=coskx, q2(x)=sinkx, x < 0  (5.1) 

We identify q~(x) and q2(x) as the position coordinates of a two-dimen- 
sional oscillator at time t=kx. Hence the momentum p =  (p~, P2) is given 
by the equations 

px(x) = k  i dq~ clq2 
dx ' P2 (x )=k -1  dx (5.2) 

The corresponding kinetic equation in the P6-model is given by 

t~f(q, p, t) ~f ~f 
Ot ~ p ~q - q ~--p 

=nk-l[f(q, p-2f lq ,  t ) - f ( q ,  p, t)] (5.3) 
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the left-hand side describing the harmonic oscillator motion and the right- 
hand side the effect of the random hits. The last hit occurs at x = L and the 
kinetic equation (5.3) is valid on the interval 0 < x < L .  The motion 
specified by (5.1) and (5.2) corresponds to initial conditions q ( 0 - ) - - ( 1 ,  0) 
and p ( 0 - ) =  (0, 1), so that the distribution function starts as 

f(q, p, 0 - ) =  c~(q, - 1) 3(q2) b(Pl) b(P2 - -  1) (5.4) 

It is easily seen that J=qlP2-q2Pl  is a constant of the motion for the 
kinetic equation (5.3) with value J =  1. The energy g 1 2 

= ~(Pl + q~ + P~ + q~) 
is not conserved. Its initial value at 0 -  equals unity and the equation 
describes how the energy varies stochastically. The time evolution of the 
average energy is found from the moment equations 

d 
d~ (q~qJ) = (qiPJ+ P~qJ) 

d 
dt (q'PJ + Piqj) = -2(1 - ~)(qiqj) + 2(pipy) 

d 
dt (P~PJ) = 2tiff(q,%) - (1 - ~)(q~Ps + P~%) 

(5.5) 

where (i, j ) =  1, 2 and we have abbreviated ~ = 2nfl/k. The average is over 
the time-dependent distribution f(q,  p, t). For i = j  these equations are 
identical to the moment equations (41) derived by Frisch and Lloyd, ~6) 
who also gave the explicit solution of the equations. There are solutions 
with exponential time dependence ~ e zt if z satisfies the cubic equation 

z 3 + 4 ( 1 - f f ) z - 4 f l ~ = 0  (5.6) 

There is always one positive root, say Zl, and roots z2 and z3 either both 
negative or complex conjugates with negative real part. Hence, the 
exponential growth of the energy is dominated by the root z 1. The 
asymptotic behavior of the mean resistance ( P ) L  at large L is given by 

(p )L~e  krzl (5.7) 

Before discussing the relationship to the method of the preceding sec- 
tions, we note that the original Frisch-Lloyd equation for a one-dimen- 
sional oscillator may be recovered from (5.3) by integration over either 
(q~, Pl) or (q2, P2). Furthermore, we remark that Eq. (5.3) may be derived 
by Ubbink's method, (8) as discussed by van KampenJ 9) 
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The average energy after the last hit <g)L may alternatively be 
calculated from the average of < 6 ~ )N,L over the number of hits occurring in 
the interval (0, L), 

<E)L=  ~ PL(N)<E>N,L (5.8) 
N = 2 

For Poisson statistics we find from (3.13) and (4.10) 

1-- f  e S L ( g ) , d s  
< ~ ) L = 2rein (5.9) 

where <6~ is given by 

<~>s = ~ <E>N, (5.10) 
N ~ 2  

Substituting the result (4.8) obtained by the transfer matrix method, we 
find 

<~>s = [K3[I- <~3(s)> K3]-I<G3(s)> K3122 (5.11) 

It follows from (5.9) and (5.11) that the asymptotic behavior of <6~)L for 
large L is dominated by the root s~ of the characteristic equation 
I I -  (G3(s)) K3[ =0  with largest real part. It follows from (4.12) with 2=  1 
and from (4.13) and (4.15) that this is a cubic equation in s, which is iden- 
tical to (5.6) with z = s/k. 

Thus we have shown how the Frisch-Lloyd equation is related to the 
transfer matrix method, The FL equation allows one to evaluate averages 
at fixed L, but with fluctuating number of scatterers, and for such an 
ensemble the method is quite powerful. The rationale for using the two- 
dimensional FL equation (5.3) is that in this way one can evaluate 
averages of observables involving cross products of quantities expressed in 
(ql, P~) and (q2, P2), respectively, for instance, powers of the resistance p. 
We now return to the transfer matrix method, which allows one to evaluate 
more detailed ensemble averages. 

6. M E A N  RESISTANCE AT FIXED N A N D  L 

We consider the mean resistance <P)N,L for a fixed number N of scat- 
terers with xl = 0 and XN = L. This is expressed by (2.7) in terms of the 
mean energy <g)U,L, which in turn is given by (4.10). We evaluate the 
integral in (4.10) asymptotically for large N and L by the saddle point 
method. 
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For positive real s the average (g}N,s in (4.11) will be dominated for 
large N by the root 2~, which corresponds via (4.16) to the root A~(v, fl) of 
the cubic equation (4.6). Introducing x = y-1A(y,  fl), we transform to the 
equation 

y(y2+4) x3 - - (3y2+8f ly+8f i2+4)xe+(3y+8f i ) x - - l=O (6.1) 

For positive y this equation has a root x~(y) with the behavior 

x~(y),~ 1+2fi2- for y-*O, xj(y),~ 1- f o r y ~ o o  (6.2) 
Y Y 

For small fl the root is x~(y)~ y-~ for all positive y. The corresponding 
exponent in (4.11) is given by 

sL + N In 21(s) = (y - v) kL + N ln[vxl(y)] (6.3) 

Hence we find the saddle point So = kyo-n ,  with Yo determined from the 
equation 

rlR(yo) = 1 (6.4) 

where t /= N/kL and where the function 

d 
R(y) = - -7-  in x~(y) 

ay (6.5) 

may be obtained in explicit form from (6.1). Using (3.10) in Stirling's 
approximation, we find from (4.10) that the asymptotic growth of the 
average resistance is given by 

(P ) N,L ~ exp [yokL -- N + N ln(qxl(yo))] (6.6) 

Explicit formulas may be obtained with ease only in the low- and 
high-density limits corresponding to q ~ 1 and r/>> 1, respectively. In both 
limits one finds by use of (6.2) that Y0 ~ r/. In the low-density limit this 
leads to 

(p)N,L~exp[Nln(1 + 2fl2)3, N ~ k L  (6.7) 

This agrees with Landauer's formula (1) for (P)N when specialized to 
6-function scatterers. In the high-density limit the exponent in (6.6) 
vanishes to lowest order and we must consider higher order corrections. 

Rather than using the explicit expression for the roots of the cubic 
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(6.1), it is simpler to work directly from the equation. Introducing the 
variable ~ by putting x = (1 + ~)/y, we transform to the simpler equation 

(y2 + 4) ~3 + 8(1 - / / 2  _ / /y )  ~2 + 4(1 - 4/~ 2 - 2//y)~ - 8fl 2 = 0 (6.8) 

We find the asymptotic expansion for the root ~1(Y) for large y by sub- 
stituting a sum of powers of y -  1/2 and comparing coefficients. The first few 
terms of the corresponding expansion of xl(y) read 

x , ( y ) = l + ~ + ~  f125+ O(y-5/2 ) (6.9) 
Y Y Y 

In the same manner we find an expansion valid for small y by substituting 
a sum of powers of y in (6.8) or directly in (6.1). This yields 

x,(y) =_1 + 2fl~ + A ~ +At y+ O(y 2) (6.10) 
Y 

with coefficients 

4/~3 A1 = 2fl4(4 -/~2 - 2/~4) (6.11) 
A ~  1 +2fl  2' (1+2fl2) 3 

From the first two terms in (6.9) we find for the average resistance in 
the high-density limit 

(P)u,r ~ exp(8flkNL) ~/2, N >> kL (6.12) 

For completeness we also give the first correction terms to the results (6.7) 
and (6.12). In the low-density limit we find from (6.10) 

(p)N,c~exp[Nln( l+2f l2)+Nl@2~2q],  N ~ k L  (6.13) 

In the high-density limit we find from (6.9) 

( j O ) N , L  ~ exp[(8fikNL) 1/2 - �89 N>> kL (6.14) 

The most remarkable feature of the above results is embodied in (6.7) 
and (6.12), These expressions show that for fixed wavenumber k and fixed 
length L the mean resistance at first grows exponentially with the number 
of scatterers N, as predicted by Landauer, {~) but finally for large N grows 
only with the exponential of v]-N. Growth of the average resistance (p)N,r  
as exp(a x/N) for fixed length L has been found in numerical studies by 
Eberle and Erd6s (see Ref. 4). 
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We can write the asymptotic expression (6.6) in the form 

with the growth rate 

(P ) N,L ~ exp[kLF01) ] 

r(t/) = Yo - t /+ t/log[t/x~(yo)] 

Correspondingly, we define 

S(t/) = d log V(tl)/d log t/ 

(6.15) 

(6.16) 

S 

3 

2,5 

2 

1,5 

0,5 

-2 

[3 =0,1 

I I I 

0 2 /-, 6 
log q 

Fig. 1. Plot of the rate of increase of the growth S( t l )  defined in (6.17) versus log t/, where 
tl = N / k L ,  for Poisson-distr ibuted g-function scatterers of strength fl = 0.1. Fo r  the critical den- 
sity ~/o = 1/(2fl) found from the optical potential one has log r/0 = 1.61. 

which is a measure for the rate of increase of the growth with N. From the 
asymptotic behavior derived above it follows that S(r/) equals unity for 
small t /and tends to �89 for large t/. We have studied the crossover behavior 
numerically. It is convenient to choose a value of y and calculate xl(y)  
from (6.1) and t/from (6.4) and (6.5). In Fig. 1 we plot S(r/) versus log r/for 
fi = 0.1. Evidently there is a strong increase of resistance in the crossover 
region. In Fig. 2 we show the same plot for fl = 0.01. There is a pronounced 
resonance, which sharpens as fi decreases. At the same time the position of 
the maximum shifts to larger values of 1/. 

We attempt to locate the position of the maximum. From the Lan- 
dauer formula for the resistance in the low-density regime one deduces a 

(6.17) 
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Fig. 2. Same plot as in Fig. 1, but for /3=0.01. The critical density corresponds to 
log q0 = 3.91. 

mean free path l =  2~In log(1 + 2/32)] or l =  l/nfl 2 for small/3, The criterion 
for localization is kl = 1, and the corresponding critical density is n~ = kip 2, 
or equivalently ~h= 1/fl 2. For  repulsive scatterers (/3>0) one obtains 
another critical density by equating the energy E =  h2k2/2m to the optical 
potential. In the PS-model with scatterers Vog(x-xi) the optical potential 
is U =  ~lkVo. Using (4.5), we find the critical value t/0 = 1/(2/3). Numerically 
we find that the maximum in S(r/) is located near t/0. In other words, the 
value of the optical potential determines the location of the transition. 

7. V A R I A N C E  OF T H E  R E S I S T A N C E  

Next we consider the variance of the resistance for the different ensem- 
bles. It follows from (2.7) that the variance is related to that of the energy 
of the oscillator by 

( p 2 ) _  ( p ) 2 = � 8 8  (7.1) 

From (2.11) we find by averaging over the probability distribution (3.1) for 
the average of the square energy 

2 2 ~ )N=~EKs({Gs) Ks)N-I]33+ �89 (7.2) 
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where K5 is given by (2.12) and <Gs> is the average of the propagation 
matrix Gs(~) in (2.12) over the neighbor distribution f(~). The asymptotic 
behavior of <gZ>N for large N is dominated by the largest positive real 
root of the characteristic equation I A I - - < G s > K s I = 0 ,  which reads 
explicitly 

A s - B ( f* ,  f * )  A4 + C( f* ,  f * )  A 3 _ C ( f ;  1, f 4 1  ) [ f2i 21 f4[ 2 A 2 

+ B ( f ; x ,  f 4  ~) I f2121f412 A -If2121f412 = 0 (7.3) 

wi th f2=f (2 i k )  and f4 = f ( 4 / k )  given by (4.14) and the functions B(zl,  z j  
and C(zl, z j  defined by 

B(z~, z2) = 1 + 6112 + 6114 -I- 2(1 + 4112) Re(e2z~) + 2 Re(~4zj  

C(zl, z2) : (1 + 10112 + 24114 + 16116) Iz~l 2 

+ (1 +4112+6114+4116) [z212 (7.4) 

+ 2(1 + 4112 + 6114) Re(~2z~) + 2(1 + 6112) Re(7gz2) 

+ 2Re(~6zlz2) + 2(1 + 3112) 2 Re(72z?z2) 

Equation (7.3) is a slight generalization of an equation derived by Erd6s 
and Hernd0n. (4) For the P6-model the quintic equation (7.3) may be writ- 
ten more explicitly, but we shall not give the lengthy expression. The coef- 
ficients in the equation depend on v = n/k and on [1. We denote the roots as 
Ai(v, [1) for i =  1 ..... 5, with A~(v, [I) the real root larger than unity. 

The variance of the resistance for a fixed number N of scatterers with 
x~ = 0 and XN= L is related as in (7.1) to the variance of the energy. From 
(2.11) we find for the average of the squared energy 

I 1 
<g2>u'c = 5  + 2rciFu(L ) f e'c ds (7.5) \ 3/N,. 

where in analogy to (4.8) the integrand is given by 

K ~N--ll <g=-• = 2[Ks(<Qs(s)> 5! 1 3 3  3 N,s (7.6) 

The latter has a form analogous to (4.11) with roots )~;(s) of the quintic 
equation L21- <~s(s)> Ksl =0.  For the P6-model the roots are related to 
those of (7.3) by the relation (4.16) for i =  1,..., 5. Finally, the integral in 
(7.5) may be evaluated asymptotically for large N and L by the saddle 
point method. 

We shall discuss only the limiting cases of low and high density of 
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scatterers in the P6-model. As in Section 6, we introduce the variable x = 
y-lA(y,//).  For small y the quintic equation may be approximated by 

64yx s - 64(1 + 6//2 -1- 6//4) X 4 q- 128//(2 + 9//2) X 3 

- 4(5 + 106//2) x 2 + 40//x - 1 = 0 (7.7) 

so that the root x~(y) is given approximately by 

1 + 6//2 + 6//4 
x l (y )~  for y--*0 (7.8) 

Y 

Hence we find, in analogy to (6.7), 

(p2)U,L~eXp[Nln(1 + 6//2 + 6//4)], N,~kL (7.9) 

in agreement with (8.3) of I by virtue o f / / 2 =  [rl2/(1_ ir[2). Comparison 
with (6.7) shows that in the low-density limit the relative variance 
( 2 ( P ) x , c - -  (P )~r ) / (P )  2 grows exponentially with N at fixed L. , N , L  

The high-density limit corresponds to large values of y. As in Sec- 
tion 6, we introduce the variable ~ by putting x =  (1 + ~)/y. The quintic 
equation becomes approximately 

y2~5 _ 40fly{4 _ 40//y~3 q_ 344fl2~2 -k 256fl2~ ----- 0 (7.10) 

The corresponding root x~(y) is given by 

x,(y) = ! +  (32//)1/2 
Y 9/2 ~- O(y -2) (7.11) 

Hence we find in analogy to (6.12) 

(p2)N,L~exp(32//kNL)~/2, N > k L  (7.12) 

Comparison with (6.12) shows that in the high-density limit (p2)N,L grows 
exponentially with ~ /N at precisely the same rate as (p)~v,L. It seems likely 
that the relative variance actually decreases with N. This would be in 
agreement with computer simulations of Eberle and Erd6s (see Ref. 4). 

8. D I S C U S S I O N  

By investigating the behavior of the mean resistance (P)N,L in the 
NL-ensemble we have found remarkable deviations from the behavior 
predicted by Landauer. (1) At fixed L the average resistance indeed grows 
exponentially with N as long as the number of scatterers per wavelength is 
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much less than unity, but then the behavior changes and finally when 
tl = N / k L  is much larger than unity the resistance grows only with the 
exponential of ,~/-N. As shown in Figs. 1 and 2, in the crossover region 
there is an enhanced resistance and the rate of increase of the growth with 
N shows a resonance which becomes more pronounced for weaker scat- 
terers. We have found the above features by explicit calculation in the 
P6-model (6-function scatterers distributed with Poisson statistics), but 
qualitatively the same results should hold for a wider class of models. 

For t/~> 1 one expects that the concept of an optical potential gains 
validity. In the PS-model with scatterers V o 6 ( X -  xj) the optical potential is 
U =  Ok Vo. Calculating the resistance for a slab of thickness L with poten- 
tial U, one finds 

1 + ]CI 2 1 
(8.1) 

Pu 4 Re C 2 

where C is given by 

k k' + k + (k' - k)  e 2ik'L 
C -- -- (8.2) 

k' k' + k - (k' - k)  e 2ik'L 

with k ' = ( k 2 - 2 m U / h 2 )  lie. For large t/ we may put k'=i~c with x =  
(2mU/h2)l/2>~ k, which leads to 

/s 
e 2~c (8.3) 

P~ ~ 1 - - ~  

Using (4.5), we may rewrite the exponential as 

exp(2~cL) = exp[ (8f ikNL ) '/z ] (8.4) 

which is precisely the expression found in (6.12) for the asymptotic 
behavior of (P)N,L" From (6.9) and the relation x l  = y IA~(y, fl) we find 
A~(y, fl),,~ 1 + (Silly) ~/2 for large y, so that (4.7) yields 

( P  ) N ~ exp[  N(8flk/n) ~/2 ] (8.5) 

which is the same exponential as in (8.4) if we replace n = N / ( L ) N  by N/L,  
Finally we note from (5.6) that for large ~ = 2nfl/k the root zl is given by 
Zl ~ 2  ~ ,  From (5.7) we therefore find for high density 

(P  ) L ~ exp[L(8nf ik)  1/2 ] (8.6) 
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which is again the same exponential if we replace n = (N)IJL by NIL. 
Hence, in the high-density limit the various ensembles lead effectively to the 
same result, which is identical to that found from the optical potential. We 
have shown in (7.12) that in this limit (p2)N,L grows with N at the same 
rate as (p)2u, c. All this suggests that in the high-density limit the 
probability distribution of the resistance becomes relatively sharp and 
independent of the ensemble with a mean that may be found from the 
optical potential. 

In the low-density limit the probability distribution of p broadens 
rapidly with increasing N, as may be seen from comparison of (6.7) and 
(7.9). It is easily shown from (4.7) and (6.10) that for q ~ 1 the averages 
(P)N and (P)N,c are both given by the Landauer expression (6.7). In this 
limit one finds from (5.6) the root Zl ~ /~ ,  so that (5.7) yields 

( P ) c  ~ exp(2n/?2L) (8.7) 

which differs from (6.7) when n is replaced by NIL. The reason is that con- 
figurations with large N from the tail of the probability distribution PL(N) 
strongly influence the mean. 

Consideration of the NL-ensemble provides detailed information on 
the density dependence of the resistance. The transition from the dilute 
scatterer regime, corresponding to the Boltzmann limit in three dimensions, 
to the high-density regime where the concept of optical potential applies 
may be followed in detail. We have shown that in the one-dimensional 
P6-model the transition occurs when the energy equals the optical poten- 
tial. Our study is far from being exhaustive and both the resonance in the 
growth rate of the mean resistance and the corresponding behavior of the 
variance merit further investigation. 
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